Spring Semester Exam Content Review

- Single Strand Binding Proteins
- 2. DNA Polymerase
- 3. Helicase
- 4. RNA Primase
- 5. DNA Ligase

- 1. Single Strand Binding Proteins
- 2. DNA Polymerase
- 3. Helicase
- 4. RNA Primase
- 5. DNA Ligase

- 1. Single Strand Binding Proteins
- 2. DNA Polymerase
- 3. Helicase
- 4. RNA Primase
- 5. DNA Ligase

- 1. Single Strand Binding Proteins
- 2. DNA Polymerase
- 3. Helicase
- 4. RNA Primase
- 5. DNA Ligase

- 1. Single Strand Binding Proteins
- 2. DNA Polymerase
- 3. Helicase
- 4. RNA Primase
- 5. DNA Ligase

- 1. Single Strand Binding Proteins
- 2. DNA Polymerase
- 3. Helicase
- 4. RNA Primase
- 5. DNA Ligase

- 1. Replication fork
- 2. Leading Strand
- 3. Lagging Strand
- 4. Okazaki Fragment
- 5. RNA Primer

- A. Shorter pieces of DNA that are built in the $5' \rightarrow 3'$ on the antiparallel strand
- B. Name for A
- C. Beginning of both the leading and lagging strands
- D. Where the DNA is split
- E. Continuous strand of DNA build in the 5' \rightarrow 3'

- 1. Replication fork
- 2. Leading Strand
- 3. Lagging Strand
- 4. Okazaki Fragment
- 5. RNA Primer

- A. Shorter pieces of DNA that are built in the $5' \rightarrow 3'$ on the antiparallel strand
- B. Name for A
- C. Beginning of both the leading and lagging strands
- D. Where the DNA is split
- E. Continuous strand of DNA build in the 5' \rightarrow 3'

- 1. Replication fork
- 2. Leading Strand
- 3. Lagging Strand
- 4. Okazaki Fragment
- 5. RNA Primer

- A. Shorter pieces of DNA that are built in the $5' \rightarrow 3'$ on the antiparallel strand
- B. Name for A
- C. Beginning of both the leading and lagging strands
- D. Where the DNA is split
- E. Continuous strand of DNA build in the 5' \rightarrow 3'

- 1. Replication fork
- 2. Leading Strand
- 3. Lagging Strand
- 4. Okazaki Fragment
- 5. RNA Primer

- A. Shorter pieces of DNA that are built in the $5' \rightarrow 3'$ on the antiparallel strand
- B. Name for A
- C. Beginning of both the leading and lagging strands
- D. Where the DNA is split
- E. Continuous strand of DNA build in the 5' \rightarrow 3'

- 1. Replication fork
- 2. Leading Strand
- 3. Lagging Strand
- 4. Okazaki Fragment
- 5. RNA Primer

- A. Shorter pieces of DNA that are built in the $5' \rightarrow 3'$ on the antiparallel strand
- B. Name for A
- C. Beginning of both the leading and lagging strands
- D. Where the DNA is split
- E. Continuous strand of DNA build in the 5' \rightarrow 3'

- 1. Replication fork
- 2. Leading Strand
- 3. Lagging Strand
- 4. Okazaki Fragment
- 5. RNA Primer

- A. Shorter pieces of DNA that are built in the $5' \rightarrow 3'$ on the antiparallel strand
- B. Name for A
- C. Beginning of both the leading and lagging strands
- D. Where the DNA is split
- E. Continuous strand of DNA build in the 5' \rightarrow 3'

DNA Replication

Which of the following models of replication is the accurate portrayal of the method of replication? What is it called?

DNA Replication

Which of the following models of replication is the accurate portrayal of the method of replication? What is it called?

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

- 5' Cap and Poly A tail added
- DNA copied to RNA
- UAA, UAG, or UGA stop the process
- Thymine replaced with Uracil
- tRNA matches to mRNA
- Introns removed, Exons spliced
- Amino acid chains are built
- Start Codon AUG is recongized

- Transcription
- RNA Modification
- Translation

Transcribe and Translate the Following Sequence of DNA

Codon Chart								
		U	С	А	G			
First Position (5′)	U C	Phenylalanine Phenylalanine Leucine Leucine Leucine Leucine Leucine	Serine Serine Serine Proline Proline Proline	Tyrosine Tyrosine Stop Stop Histidine Histidine Glutamine	Cysteine Cysteine Stop Tryptophan Arginine Arginine	U C A G U C A C		
	A G	Isoleucine Isoleucine Isoleucine Methionine Valine Valine Valine	Threonine Threonine Threonine Threonine Alanine Alanine Alanine	Asparagine Asparagine Lysine Lysine Aspartic acid Aspartic acid Glutamic acid	Arginine Serine Arginine Arginine Glycine Glycine Glycine	UCAGUCA	Third Position (3')	
		Valine	Alanine	Glutamic acid	Glycine	G		

Transcribe and Translate the Following Sequence of DNA

•	DNA CODE:	TAC	GCT	TTC	ATG	CGT	TGA	ACT
	mRNA CODON:	AUG	CGA	AAG	UAC	GCA	ACU	UGA
	AMINO ACID:							

	Codon Chart								
			Second	Position					
		U	С	А	G				
First Position (5′)	U C	Phenylalanine Phenylalanine Leucine Leucine Leucine Leucine	Serine Serine Serine Proline Proline Proline	Tyrosine Tyrosine Stop Stop Histidine Histidine Glutamine	Cysteine Cysteine Stop Tryptophan Arginine Arginine	UCAGUCA			
	A G	Isoleucine Isoleucine Isoleucine Methionine Valine Valine Valine	Threonine Threonine Threonine Threonine Alanine Alanine Alanine	Asparagine Asparagine Lysine Lysine Aspartic acid Aspartic acid Glutamic acid	Arginine Serine Arginine Arginine Glycine Glycine Glycine	UCAGUCA	Third Position (3')		
		Valine	Alanine	Glutamic acid	Glycine	G			

Transcribe and Translate the Following Sequence of DNA

•	DNA CODE:	TAC	GCT	TTC	ATG	CGT	TGA	ACT
	mRNA CODON:	AUG	CGA	AAG	UAC	GCA	ACU	UGA
	AMINO ACID:	Meth	Arg	Lys	Tyr	Ala	Thr	STOP

			Codor	n Chart			
			Second	Position			
		U	С	А	G		
	U C A G	Phenylalanine Phenylalanine Leucine Leucine Leucine	Serine Serine Serine Proline Proline	Tyrosine Tyrosine Stop Stop Histidine	Cysteine Cysteine Stop Tryptophan Arginine	U C A G U C	
First Position		Leucine Leucine	Proline Proline Proline	Glutamine Glutamine	Arginine Arginine Arginine	AG	Third Position
(5')		Isoleucine Isoleucine Isoleucine Methionine	Threonine Threonine Threonine Threonine	Asparagine Asparagine Lysine Lysine	Serine Serine Arginine Arginine	C A G	(3)
		Valine Valine Valine Valine	Alanine Alanine Alanine Alanine	Aspartic acid Aspartic acid Glutamic acid Glutamic acid	Glycine Glycine Glycine Glycine	U C A G	

DNA Mutations

- Original DNA
 - TAC GCT TTC ATG CGT TGA ACT

Which of the following is a Point Mutation, Insertion or Deletion?

TAC	GCT	TTA	TGC	GTT	GAA	СТ	
TAC	GCT	TTC	ATG	CGT	TTG	AAC	T
TAC	GCT	TAC	ATG	CGT	TGA	ACT	

DNA Mutations

- Original DNA
 - TAC GCT TTC ATG CGT TGA ACT

Which of the following is a Point Mutation, Insertion or Deletion?

TAC	GCT	TTA	TGC	GTT	GAA	СТ	
TAC	GCT	TTC	ATG	CGT	TTG	AAC	٦
TAC	GCT	TAC	ATG	CGT	TGA	ACT	

- Restriction Enzymes
- GMO
- PCR
- DNA Electrophoresis

- An organism that has been changed with the DNA of another organism: Golden rice, Bacteria that produce human insulin, Spider Goats
- Process of replicating DNA without cells
- Separating DNA fragments for analysis
- Cut DNA at specific nucleotide sequences to form sticky ends

 allows for genetic recombination or analysis

- Restriction Enzymes
- GMO
- PCR
- DNA Electrophoresis

- An organism that has been changed with the DNA of another organism: Golden rice, Bacteria that produce human insulin, Spider Goats
- Process of replicating DNA without cells
- Separating DNA fragments for analysis
- Cut DNA at specific nucleotide sequences to form sticky ends

 allows for genetic recombination or analysis

- Restriction Enzymes
- GMO
- PCR
- DNA Electrophoresis

- An organism that has been changed with the DNA of another organism: Golden rice, Bacteria that produce human insulin, Spider Goats
- Process of replicating DNA without cells
- Separating DNA fragments for analysis
- Cut DNA at specific nucleotide sequences to form sticky ends

 allows for genetic recombination or analysis

- Restriction Enzymes
- GMO
- PCR
- DNA Electrophoresis

- An organism that has been changed with the DNA of another organism: Golden rice, Bacteria that produce human insulin, Spider Goats
- Process of replicating DNA without cells – polymerase chain reaction
- Separating DNA fragments for analysis
- Cut DNA at specific nucleotide sequences to form sticky ends

 allows for genetic recombination or analysis

- Restriction Enzymes
- GMO
- PCR
- DNA Electrophoresis

- An organism that has been changed with the DNA of another organism: Golden rice, Bacteria that produce human insulin, Spider Goats
- Process of replicating DNA without cells – polymerase chain reaction
- Separating DNA fragments for analysis
- Cut DNA at specific nucleotide sequences to form sticky ends

 allows for genetic recombination or analysis

- Five samples of DNA were analyzed using DNA electrophoresis with the following results.
 - 1) Which end of the gel was near the positive electrode?

- Five samples of DNA were analyzed using DNA electrophoresis with the following results.
- Which end of the gel was near the positive electrode?
 Explanation: The wells() are where the DNA is initially placed. The DNA is negatively charged due to the phosphates (PO4⁻³) and therefore move toward the positive electrode.

-	
-	
-	

2) Which segment of DNA is the smallest?

2) Which segment of DNA is the smallest?

 The agarose gel is like a jungle of vines and plants. Smaller pieces are able to move faster and farther.

_	_		

If the five samples are from a domesticated dog, a wolf, a coyote, a cat, and a pig, which sample most likely belongs to the organisms? (Hint: Domesticated Dogs are descended from Wolves, not coyotes, although all three species can successfully interbreed)

If the five samples are from a domesticated dog, a wolf, a coyote, a cat, and a pig, which sample most likely belongs to the organisms? (Hint: Domesticated Dogs are descended from Wolves, not coyotes, although all three species can successfully interbreed)

A = Pig – herbivore, most different from other four

B & E = Wolf and Dog – Basically the same thing

D = Coyote – slight difference, but
almost the same as wolf and dog
C = Cat, not because cat starts with "c"
but because it is similar to the other
carnivore profiles. Cats are more like
dogs than they are like pigs.

Draw a cladogram for the pig, wolf, cat, coyote, dog data.

Draw a cladogram for the pig, wolf, cat, coyote, dog data.

Note: This cladogram doesn't actually represent the evolutionary lineage of dogs and cats. Cats actually would be farther down the line on the cladogram since they have a more specialized diet and retractable claws. But the limited data from the DNA analysis supports this tree. Any cladograms you must draw on the exam must represent the data you are given, not necessarily the actual reality.

Identify the following types of natural selection as stabilizing, directional, or diversifying (disruptive).

Identify the following types of natural selection as stabilizing, directional, or diversifying (disruptive).

- Fitness
- Speciation
- Genetic Drift
- Bottle Neck Effect
- Founder Effect

- The formation of a new species
- Loss of genetic diversity due to separation of a few individuals from the main population
- The loss of genetic diversity due to random chance (Ex: Wind pollination)
- Loss of genetic diversity due to a natural disaster
- The ability to survive and reproduce to make viable offspring.

- Fitness
- Speciation
- Genetic Drift
- Bottle Neck Effect
- Founder Effect

- The formation of a new species
- Loss of genetic diversity due to separation of a few individuals from the main population
- The loss of genetic diversity due to random chance (Ex: Wind pollination)
- Loss of genetic diversity due to a natural disaster
- The ability to survive and reproduce to make viable offspring.

- Fitness
- Speciation
- Genetic Drift
- Bottle Neck Effect
- Founder Effect

- The formation of a new species
- Loss of genetic diversity due to separation of a few individuals from the main population
- The loss of genetic diversity due to random chance (Ex: Wind pollination)
- Loss of genetic diversity due to a natural disaster
- The ability to survive and reproduce to make viable offspring.

- Fitness
- Speciation
- Genetic Drift
- Bottle Neck Effect
- Founder Effect

- The formation of a new species
- Loss of genetic diversity due to separation of a few individuals from the main population
- The loss of genetic diversity due to random chance (Ex: Wind pollination)
- Loss of genetic diversity due to a natural disaster
- The ability to survive and reproduce to make viable offspring.

- Fitness
- Speciation
- Genetic Drift
- Bottle Neck Effect
- Founder Effect

- The formation of a new species
- Loss of genetic diversity due to separation of a few individuals from the main population
- The loss of genetic diversity due to random chance (Ex: Wind pollination)
- Loss of genetic diversity due to a natural disaster
- The ability to survive and reproduce to make viable offspring.

- Fitness
- Speciation
- Genetic Drift
- Bottle Neck Effect
- Founder Effect

- The formation of a new species
- Loss of genetic diversity due to separation of a few individuals from the main population
- The loss of genetic diversity due to random chance (Ex: Wind pollination)
- Loss of genetic diversity due to a natural disaster
- The ability to survive and reproduce to make viable offspring.

Plant Group Characteristics

Plant Group	Spore Producing	Motile Sperm (Need Water)	Vascular Tissue	Seed Producing	Seeds Covered with Fruit
Bryotphytes					
Ferns					
Gymnosperms					
Angiosperms					

Plant Group Characteristics

Plant Group	Spore Producing	Motile Sperm (Need Water)	Vascular Tissue	Seed Producing	Seeds Covered with Fruit
Bryotphytes	\checkmark	\checkmark			
Ferns	\checkmark	\checkmark	\checkmark		
Gymnosperms			\checkmark	\checkmark	
Angiosperms			\checkmark	\checkmark	\checkmark

- Complete the following charts for the animal characteristics.
- Hint: Rather than trying to remember a bunch of facts, remember what these animals look like. Pictures are easier to remember and carry more information than individual points of information.
- If you don't remember what they look like go to the Animal Powerpoint or use the Google Box.

Group	Radial	Bilateral	Gastrovascular	Complete	Gills	Lungs	Exoskeleton	Cartilagenous	Bony
	Symmetry	Symmetry	Cavity	Digestive				Skeleton	Skeleton
				System					
Sponges									
Cnidarians									
Acoelomate									
Pseudocoelomat									
е									
Coelomate									
Annelids									
Mollusks									
Arthropods									
Echinoderms									
Agnatha									
Chondrichthes									
Osteoichthes									
Amphibians									
Reptiles									
Birds									
Mammals									

Group	Radial Symmetry	Bilateral Symmetry	Gastrovascular Cavity	Complete Digestive	Gills	Lungs	Exoskeleton	Cartilagenous Skeleton	Bony Skeleton
				System					
Sponges	-	-	-	-	-	-	-	-	-
Cnidarians	+	-	+	-	-	-	-	-	-
Acoelomate	-	+	+	-	-	-	-	-	-
Pseudocoelomat	-	+	-	+	-	-	-	-	-
е									
Coelomate	-	+	-	+	-	-	-	-	-
Annelids	-	+	-	+	-	-	-	-	-
Mollusks	-	+	-	+	+	-	-	-	-
Arthropods	-	+	-	+	+	-	+	-	-
Echinoderms	+	-	-	+	+	-	-	-	-
Agnatha	-	+	-	+	+	-	-	+	-
Chondrichthes	-	+	-	+	+	-	-	+	-
Osteoichthes	-	+	-	+	+	-	-	-	+
Amphibians	-	+	-	+	+/-	-/+	-	-	+
Reptiles	-	+	-	+	-	+	-	-	+
Birds	-	+	-	+	-	+	-	-	+
Mammals	-	+	-	+	-	+	-	-	+

Group	Leathery	Hard	2	3	4	Endotherm	Exotherm	Hair	Nurse
	Egg	Shelled	Chambered	Chambered	Chambere				Young
		Egg	Heart	Heart	d Heart				
Sponges									
Cnidarians									
Acoelomate									
Pseudocoelomat									
е									
Coelomate									
Annelids									
Mollusks									
Arthropods									
Echinoderms									
Agnatha									
Chondrichthes									
Osteoichthes									
Amphibians									
Reptiles									
Birds									
Mammals									

Group	Leathery	Hard	2	3	4	Endotherm	Exotherm	Hair	Nurse
	Egg	Shelled	Chambered	Chambered	Chambere				Young
		Egg	Heart	Heart	d Heart				
Sponges	-	-	-	-	-	-	+	-	-
Cnidarians	-	-	-	-	-	-	+	-	-
Acoelomate	-	-	-	-	-	-	+	-	-
Pseudocoelomat	-	-	-	-	-	-	+	-	-
е									
Coelomate	-	-	-	-	-	-	+	-	-
Annelids	-	-	-	-	-	-	+	-	-
Mollusks	-	-	-	-	-	-	+	-	-
Arthropods	-	-	-	-	-	-	+	-	-
Echinoderms	-	-	-	-	-	-	+	-	-
Agnatha	-	-	+	-	-	-	+	-	-
Chondrichthes	-	-	+	-	-	-	+	-	-
Osteoichthes	-	-	+	-	-	-	+	-	-
Amphibians	-	-	-	+	-	-	+	-	-
Reptiles	+	-	-	+	-	-	+	-	-
Birds	-	+	-	-	+	+	-	-	-
Mammals	+	-	-	-	+	+	-	+	+